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Abstract. We study the properties of a modified discrete non-linear Schradinger equation 
(MDNLS) that arises from the coupling of an excitation to an acoustic chain. We find exact 
results for self-trapping in chains of two and three sites and approximate results for longer 
chains. We also study possible recurrence phenomena in the equadan and campare our findings 
with those ofthe standard DNLS as well as the integrable DNLS. We find that dynamics in MDNU 
becomes more rapidly irregular compared to the other two equations. 

1. Introduction 

There has been a substantial increase in interest in the study of discrete sets of non-linear 
dynamical equations 111. The reason is that continuous equations, seen from the point 
of view of condensed matter physics, are only an approximation to the complete problem 
that usually respects the periodic structure of the lattice. The discrete equations on the 
other hand, even though more realistic, are much more challenging to tackle analytically. 
One of the ubiquitous discrete equations is the discrete non-linear Schrdinger equation 
(DNLS) [2-51: 

(1) 

which arises in the general problem of polaron formation as an adiabatic equation describing 
the dynamics of an excitation coupled to opticul oscillators 161. It is the aim of the present 
work to analyse properties related to polamn dynamics when, confnry to the above case, the 
excitation is coupled to an ncoustic chain [7,8]. In this case and under a similar adiabatic 
limit one obtains the following modified discrete non-linear Schrodinger equation (MDNLS): 

(2)  

It was shown numerically in [8] that the coupled system of equations leading to a polaron 
shows a regime where intense recurrences occur. In this work we compare the non-linear 
properties of MDNLS with those of DNLS as well as the integrable DNLS (IDNLS) or the 
Ablowitz-Ladic equation [9] and find which of the unusual features of the coupled system 
are present in the MDNLS. In section 2 we study the self-trapping properties of MDNLS, in 
section 3 we look at its recurrence properties and in section 4 we present our conclusions. 

id, = v(c.+, + ~ - 1 )  - XIC,I*C, 

id, = V(G+I +GI) - x ( ~ c ~ + I ~ ~ + I c ~ - - L I ~ + ~ I c , I ~ ) c . .  

t Also at: Computational Physics Laboratoty, Department of Physics, University of North Texas, Denlon. TX 
76203. USA. 
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2. Self-trapping properties of MDNLS 

In order to compare the self-trapping properties of (2) with those of the standard DNLS of 
(1) we perform an analysis similar to that of Molina and Tsironis 141. We study chains with 
different numbers of sites ( N )  using periodic and open boundary conditions. We typically 
consider the initial condition that places the particle at t = 0 at a given lattice site no, i.e. 
Cn(t = 0) = & n o ,  and compute the time-averaged probability for the particle to remain in 
that site, i.e. (ICn,12). We consider both positive and negative V ,  taken to be V = &I, and 
the non-linearity parameter X takes different positive values. 

2.1. Exact results 

For the dimer ( N  = 2)  and periodic himer ( N  = 3) case we can find solutions of (2) in 
closed form. We first write (2) using the density matrix pm,n = CmC;. We find that for 
these two cases the equations of motion for pm,- are exactly the same as the corresponding 
ones that arise from DNLS. Consequently, for the dimer case we have the same analytical 
solution found in [3] for the DNLS dimer, where the critical value of X for self-trapping is 
X,, = 41VJ and occurs for both V = zkl. Similarly for the periodic trimer we have the 
same solution as in [4] for the localized initial condition that gives X,, = -6V (there is 
abrupt transition only for V = -1).  

This accidental event, where systems obeying different non-linear equations have exactly 
the same time evolution, occurs only in these two cases, as can be seen from the equations 
for the time dependence of ,om.n. From (2) we have for every m. n = 1, . . . , N :  

. dp, 
dt 1- = V ( ~ m + t . n  + ~ m - 1 . n  - p m . n + l  - ~ m , n - ~ )  

- X ( P m + l . m + l +  ~ m - l . m - 1 + 2 ~ m . m  - P ~ + I . ~ + I  - pn-1.n-1 - 2 ~ n . n ) ~ m . n ~  (3) 

Comparing with the corresponding equation for the DNLS case (see (2) in [3]) we see that 
the equations differ in the term 

- X ( P ~ + I . ~ + I  + P m - l . m - l +  Pm.m - P ~ + I . ~ + I  - ~ n - 1 . n - 1  - pn,n)Pm,n 

which vanishes for all m, n only in the dimer case and penodic trimer case. 
Solutions in closed form can be found also for the open trimer case with the initial 

condition Cz(t = 0) = 1. In this case using the symmetry of the problem we obtain a 
closed-form equation for IC2(t)I2 = p2.2 i.e. + W ( a . 2 )  = 0, where 

(4) W ( p )  = V 2 [ Q a Z p 4  -k (4 - an 1 2  ) p  2 - 4p + guz] 

with a = X / V .  We have W ( p  = 1) = 0. 
In order for a self-trapping transition to occur the potential W ( p )  must develop a double 

root in the range 0 -= p < 1, or equivalently there should be a common real root for the 
equations W ( p )  = 0 and dW/dp = 0. This is not true for the function W ( p )  of (4). We 
note that in the corresponding DNLS open trimer case there is also absence of an abrupt 
transition while the equation for p2.2 is different from (4) [lo]. 
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2.2. Numerical results 
For the open trimer case with initial condition C1 ( t  = 0) = 1, no = 1 and for chains with 
a larger number of sites (N from 4 to 101) we compute numerically the time-averaged 
probability for a return to the initial site, i.e. (IC,,[*}. For open chains we take two 
different initial conditions Cn(t = 0) = with (a)  no = 1 and (b )  no = N / 2  for N even 
or no = ( N  + 1)/2 for N odd. For simplicity, the first case will be referred to as the initial 
condition at site 1 and the second as the initial condition at site N/2.  Summarizing our 
findings, we have the following. 

(i) For periodic boundary conditions and N even we have the same time evolution for 
both values of V = il. For N odd the results are different for V = +1 and V = -1. 
There is no abrupt transition for N = 3 or N = 5 and V = f l ,  although there is one for 
V = -1. For other odd-N lattices the self-trapping transition appears at the same critical 
XSL for both V = i l  (except for the case N = 15 that there is a small difference between 
two opposite V values). We observe that for periodic chains the critical non-linearity X,, for 
a self-trapping transition begins from X = 6 and decreases for larger N until the limiting 
value X = 1.85 (see figure 1). 
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F i p n  1. Critical value of X, for the self-trapping transition as a function of the number of 
sites N for (i) a periodic chain (squares), (ii) an open chain with a localized inrtial condition at 
site 1 (bullets) and (iii) an open chain with initial condition at site NI? (crosses). In all cases 
V = -1. The full line is a guide far the eye. Also we have plotted results (full curves) obtained 
from theoretical arguments: (a) for the periodic case and (b) for the open case. 

(ii) For open chains and initial conditions at site I we have the same time evolution for 
both values of V = f l  and both even and odd N values. With the exception of the dimer 
case (Xsc = 4) the critical value for self-trapping does not seem to depend on N being 
approximately equal to X,, = 4.35 (see figure 1). 
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(iii) For open boundary conditions and the initial condition at site N / 2  we study the 
case V = -1. Here the critical value is about 4 until N = 6 (for N = 3 and N = 5 there is 
no abrupt transition), and for N up to 7 the X,, is about 2. For very large N the X,, reach 
the limiting value 1.85, as expected, since for N >> 1 the results from an open chain with 
initial condition at the site N / 2  must coincide with those of the periodic case (see figure 1). 
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Figure 2. Time-averaged probability (lC,,olz) for an initidly occupied site no as a function of 
the non-linearity parameter X for a chain with N = 48 sites and (i) periodic boundary conditions 
(full curve). (ii) open boundary conditions and no = I (broken curve) and (iii) oven bound- 
conditions and no = 24 (dotted curve). In all cases V = -I. 

In figure 1 we summarize all the results for cases (i), (ii) and (iii) for V = -1. In 
figure 2 we plot {]Cno12) as a function of X for N = 48 (V = -1). We observe the 
presence of irregular fluctuations prior to the mpped regime in the case of an open chain 
and initial conditions starting from site no = 1. This is true for other values of N as well. 
Furthermore, the very strong peak at X = 3.74 appears in a systematic way at the same 
position, almost for all different N .  For the periodic case and smaller N we also observe 
similar fluctuations, but with smaller strength and width. These features are similar to those 
observed for DNLS [4]. We see that MDNLS shares common features with the standard DNLS. 
We note, however, that the systematic strong peak at a certain position before the self- 
trapping transition is characteristic only of MDNLS. Another important difference between 
two non-linear equations is that in the periodic case for large N the self-trapping transition 
occurs for a smaller value of X for MDNLS than for DNLS. This value is about 1.85 for (2 )  
and 4.00 for DNLS [4]. For the case of open chains and initial conditions at site 1 we have 
X,, equal to 4.35 in MDNLS and 4.00 in DNLS respectively. 



Self-mapping properties and recurrence phenomena in MDNLS 7851 

2.3. Comparison with theoretical estimates for self-trapping 

Equation (2) can be derived from the following Hamiltonian: 

using the equations of motion C, = [If, CO] with IC,, Ci ]  = iJm,", IC,, Cn] = 0 = 
(C;, C:), where (,] are the standard Poisson brackets. Bernstein and co-workers 1111 
suggested a simple way of using the Hamiltonian for DNLS as well as conservation of 
energy for estimating the location of the self-trapping transition occumng in a chain with 
a finite number of sites N .  Their calculations for DNLS are consistent with the numerical 
findings and other analytical results. In order to repeat their calculations for MDNLs we need 
the singlesite energy Hs6 (the value of H in the case that all the probability is concentrated 
on a single site, i.e. C; = 1 for some i and Ci = 0 for j # i )  and the equipartioned-state 
energy Heq (the value of H in the case that C; = for all i ) .  In [ I l l  it was assumed 
that equating H,, with H ,  and solving for X we obtain an estimate for the critical value 
of the non-linearity parameter at the self-trapping transition. In our case we have from (5) 
that Ifss  = -X and for an open chain we obtain 

N - 1  2X 2X 
N N N 2  Hq = 2 V -  - - + -. 

Using the condition H,, = Hcq leads to the following critical X: 

N ( N  - 1 )  
( N  - 1 ) 2  + 1 ' 

x,, = -2v 

For the periodic chain, on the other hand, H, = 2V - 2 X / N  and the condition Hss = Hq 
leads to 

N 
N - - 2 '  

x,, = -2v- (7) 

In figure 1 we plot the relations (6) and (7) respectively, along with numerical results for 
comparison. We note that there is very good agreement in the periodic chain case. For 
open chains there is agreement for N > 6 if we take initial conditions at site N / 2 .  

3. Recurrence phenomena 

The occurrence of recurrence phenomena in the solutions of non-linear differential equations 
has been well known since the work of Fermi and co-workers, who studied numerically 
vibrations in non-linear lattices [12]. Similar phenomena have been observed both 
numerically and experimentally in the continuum NLS equation 

.au a2u 
1- + - + xIuI2u = 0 

at ax2 

resulting from a Benjamin-Feir instability [13]. A behaviour of the same type has been 
observed in the context of the more complicated coupled electron-phonon system described 
in [8]. It is interesting to find out whether the recurrence observed reflects properties 
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of the MDNLS or if it is inherent in the electron-phonon system. For this purpose we 
study dynamical properties of the MDNLS for different initial conditions that might lead to 
recurrence behaviour, and compare its behaviour with two other non-linear equations, i.e. 
the DNLS and the integrable DNLS (IDNLS), or Ablowitz-Ladic equation [9,14]: 

Equation (8) is completely integrable [9]. All three equations (DNLS, MDNLS, IDNLS) are 
different discrete versions of continuum NLS equation. In order to compare the three 
discrete versions of NLS we assume an initial state that is an eigenstate of the tight- 
binding part (i.e. the part obtained for X = 0). The initial condition has the form 
Re(C.(t = 0)) = m c o s ( k n )  and Im(C,(r = 0)) = 0, where N is the number of 
sites and k is the wavenumber. We input this initial condition, follow the time evolution for 
all probability amplitudes and calculate the participation number P ( t )  = l/(xn lC,(t)I4), 
which is very sensitive to wavefunction changes. The quantity P is an indicator of the 
localization of the wavepacket. When P = 1, for instance, the packet is completely 
confined in a single site (i.e. lC,12 = whereas for a completely delocalized state 
(i.e. ICnIz = I / N ,  Vn) we have P = N .  

3.1. Dependence on the non-lineariry parameter X 

In the numerical evaluation of P ( t )  we assume that V = -1 and a lattice with N = 300 sites. 
For each wavenumber k considered we vary the non-linearity coefficient X in the range 0-5. 
The wavenumber k has been taken equal to n/3 (which is the value for which the coupled 
electron-phonon system exhibits recurrence behaviour), n/6 or x/3.3333. Qualitatively 
the behaviour of P ( t )  is the same for DNLS and MDNLS. After an initial period of almost 
perfect periodicity in time this behaviour terminates and P(t )  becomes aperiodic (figures 3 
and 4). The integrable equation IDNLS behaves in a similar fashion except that after the 
termination of the initial periodic behaviour there are still periodic features in the evolution 
(see figure 4(b)). The characteristic time b for the end of the initial period is not the same 
in the three equations and additionally depends on the non-linearity parameter. 

Changing the value of the non-linearity parameter X has the following two effects on 
P(t) .  (i) It affects the amplitude of the periodic oscillations that become larger for higher 
values of X. Note that for X = 0 the amplitude of the oscillations vanishes since we have an 
exact eigenstate and there is no time dependence in the paicipation number. (ii) It affects 
the characteristic time to that signals the destruction of the initial periodic behaviour. For 
larger values of X the characteristic time to becomes smaller and the periodic phenomena 
disappear earlier (see figures 3(a) and 3(b)). All three equations share qualitatively this 
dependence on X. We note, however, that to is generally smaller for the MDNLS than for the 
other two equations (see figure 3(b) and figure 4)  leading to the conclusion that MDNLS has 
more chaotic features than the other two equations. Finally, we should point out that this 
initial periodic behaviour is observed only for wavenumber k that correspond to eigenstates 
of the tight-binding part of the equations. Even for small perturbations from these exact 
eigenstates the periodic features disappear. 

3.2. Dependence on the length of fhe lattice N 

To find the dependence of the initial periodic behaviour on the length we considered two 
chains with N = 40 and 300 and examined the time evolution of a common initial eigenstate. 
For IDNLS and N = 40 although the system seems to acquire chaotic behaviour, suddenly 
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Figure 3. (a) Time evolution of psnicipation number P ( r )  for the MDNLS equation. We have 
X = 1.54, k = a/3. N = 300 sites and V = -1. (b) Same as (a) with X = 2.5, k = n/3. 
N = 300 sites and V = -1. 
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Figure 4. (a) Time evolution of paRicipation number P(r )  for the DNLS equation. We have 
X = 2.5, k = ~ 1 3 ,  N = 300 sites and V = -1. (b) Same as (a) for the integrable WNLS 
equation. We have X = 2.5. k = zf3, N = 300 sites and V = -1. 
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periodicity is re-established and all of this phenomenon is repeated with surprising regularity. 
This behaviour reveals a tendency of the system to form a localized structure (such as a 
‘soliton’). The DNLS appears more chaotic than IDNLS for N = 40, whereas for N = 300 
the behaviour of the two is quite similar, as expected since DNLS converges to the analytical 
solution for large chains [4, 151. For the MDNLS case we find that, for N = 300, the initially 
periodic behaviour disappears faster than in DNLS and IDNLS. For N = 40 the periodicity 
does not even have time to appear. 

4. Conclusions 

In the present work we presented an analytical and a numerical study of a modified discrete 
non-linear Schrodinger equation and compared it with two other well known equations, i.e. 
DNLS and IDNLS. The MDNLS occurs as a special limit in the dynamics of an electron coupled 
to an acoustic chain with a symmetric coupling [7,8]. The motivation for the present work 
is the recurrence phenomena found in [8] in the context of the complete coupled problem. 
We applied well known approaches from the study of DNLS [3,4,11] and analysed the 
dynamical features of MDNLS. We found that in the case of a dimer and periodic trimer the 
resulting equations are identical to those of DNLS, resulting in an identical evolution. We also 
found that for the long periodic case the self-trapping transition occurs for smaller values of 
non-linearity coefficient campared to the corresponding ones of DNLS. For chains of various 
lengths we observe initially periodic behaviour that ceaes to exist after an initial period that 
depends on the value of the non-linearity parameter. The behaviour of MDNLS appears to 
have more irregular features than the DNLS and IDNLS equations. These features consist of a 
much faster transition to a non-periodic regime (figures 3 and 4) for any number of sites. We 
conclude that the recurrence phenomena observed in the coupled electron-acoustic lattice 
system [SI cannot be attributed to the MDNLS part, but are genuine effects of the interaction 
with the acoustic chain. It is worthwhile to point out that those recurrence phenomena were 
sustained for times of the order of lo’ (in our units of fi = 1, V = l), i.e. many orders 
of magnitude larger than the initial periodic behaviour exhibited in the present results. It 
would be interesting to look for recurrences of the type seen in [8] in the context of DNLS 
as well. In this case, one would have to study the interaction of the electron with an optical 
chain of the Holstein type [16]. 
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