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Abstract. We study the properties of a modified discrete non-linear Schréidinger equation
(MDNLS) that arises from the coupling of an excitation to an acoustic chain. We find exact
results for self-trapping in chains of two and three sites and approximate results for longer
chains. We also study possible recurrence phenomena in the equation and compare our findings
with those of the standard DNLS as well as the integrable puLs. We find that dynamics in MDNLS
becomes more rapidly irregular compared to che other two equations.

1. Introduction

There has been a substantial increase in interest in the study of discrete sets of non-linear
dynamical equations [1]. The reason is that continuous equations, seen from the point
of view of condensed matter physics, are only an approximation to the complete problem
that usually respects the periodic structure of the lattice. The discrete equations on the
other hand, even though more realistic, are much more challenging to tackle analytically.
One of the ubiquitous discrete equations is the discrete non-linear Schrédinger equation
(DNLS) [2-5]:

iCp = V(Cppt + Cact) — XICa’Cy (1}

which arises in the general problem of polaron formation as an adiabatic equation describing
the dynamics of an excitation coupled to optical oscillators [6]. It is the aim of the present
work to analyse properties related to polaron dynamics when, contrary to the above case, the
excitation is coupled to an acoustic chain [7,8]. In this case and under a similar adiabatic
limit one obtains the following modified discrete non-linear Schréidinger equation (MDNLS):

iCn = V(Cn+l + Cn-l) - X(ICR-H I2 -+ ICn—1[2 + zlcnlz)cn- (2)

It was shown numerically in [8] that the coupled system of equations leading to a polaron
shows a regime where intense recurrences occur. In this work we compare the non-linear
properties of MDNLS with those of DNLS as well as the integrable DNLS (IDNLS) or the
Ablowitz—I adic equation [9] and find which of the unusual features of the coupled system
are present in the MDNLS. In section 2 we study the self-teapping propeities of MDNLS, in
section 3 we look at its recurrence properties and in section 4 we present our conclusions.

1 Also ati: Computational Physics Laboratory, Department of Physics, University of North Texas, Denton, TX
76203, USA.
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2. Self-trapping properties of MDNLS

In order to compare the self-trapping properties of (2) with those of the standard DNLS of
(1) we perform an analysis similar to that of Molina and Tsironis [4]. We study chains with
different numbers of sites () using periodic and open boundary conditions. We typically
consider the initial condition that places the particle at £ = 0 at a given lattice site 5y, ie.
Cu(t = 0) = 8.y, and compute the time-averaged probability for the patticle to remain in
that site, i.e. {|Cp,|%}. We consider both positive and negative V, taken to be V = +1, and
the non-linearity parameter X takes different positive values.

2.1. Exact results

For the dimer (N = 2) and periodic trimer (N = 3) case we can find solutions of (2) in
closed form. We first write (2) using the density matrix p,,, = C,C;. We find that for
these two cases the equations of motion for p,, , are exactly the same as the corresponding
ones that arise from DNLS. Consequently, for the dimer case we have the same analytical
solution found in {3] for the DNLS dimer, where the critical value of X for self-trapping is
X = 4}V| and occurs for both V = +1. Similarly for the pericdic trimer we have the
same solution as in [4] for the localized initial condition that gives Xy = —6V (there is
abrupt transition only for V = —1).

This accidental event, where systems obeying different non-linear equations have exactly
the same time evolution, occurs only in these two cases, as can be seen from the equations
for the time dependence of p,, .. From (2) we have forevery m,n=1,..., N:

.dom n
 Soman

it = VPt in + Pm—tin — Praptl — Pmin—1)

— X{(Pmitmtt + Po—tm—1 +2Pmm — Prtlntl — Pu—tin—1 — 20n.0) Pren. (3)

Comparing with the corresponding equation for the DNLS case (see (2) in [3]) we see that
the equations differ in the term

— X(Pmt+1me1 + Omel,m—1 + P — Prtlatl — Pr=ln—~1 — Pnn)Pmpn

which vanishes for all m, n only in the dimer case and periodic trimer case.

Solutions in closed form can be found also for the open trimer case with the initial
condition C2(t = 0) = 1. In this case wsing the symmetry of the problem we obtain a
closed-form equation for |Ca(2)|? = o2 ie. % ;3%2 + W{pz2) = 0, where

W(p) = Viiiap* + (4~ $aBp* — dp + §a?) @

with a = X/V, We have W(p =1)=0.

In order for a self-trapping transition to occur the potential W{e) must develop a double
root in the range 0 < p < 1, or equivalently there should be a common real root for the
equations W(p) = 0 and dW/dp = 0. This is not true for the function W(p) of (4). We
note that in the corresponding DNLS open trimer case there is also absence of an abrupt
transiticn while the equation for ps» is different from (4) [10].
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2.2. Numerical results

For the open trimer case with initial condition Cy(z = 0) = 1,y = 1 and for chains with
a larger number of sites (N from 4 to 101) we compute numerically the time-averaged
probability for a return to the initial site, i.e. ~{|Cy,|2). For open chains we take two
different initial conditions C,(t =) = 8, ,, with (@) rg = 1 and (§) ng = N /2 for N even
or ng = (N -+ 1)/2 for N odd. For simplicity, the first case will be referted to as the initial
condition at site 1 and the second as the initial condition at site N/2. Summarizing our
findings, we have the following.

(i) For periodic boundary conditions and N even we have the same time evolution for
both values of V = +1. For N odd the results are different for V = +1 and V = —1.
There is no abrupt transition for N =3 or N =5 and V = 41, although there is one for
V = —1. For other odd-¥ lattices the self-trapping transition appears at the same critical
X for both V = =1 (except for the case N = 15 that there is a small difference between
two opposite V values). We observe that for periodic chains the critical non-linearity X, for
a self-trapping transition begins from X = 6 and decreases for larger N until the limiting
value X = 1.85 (see figure 1).
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Figure 1. Critical value of X, for the self-trapping transition as a function of the number of
sites N for (i) a periodic chain {squares), {ii} an open chain with a localized ingtial condition at
site 1 {bullets) and (iii) an open chain with initial condition at site N /2 (¢crosses). In all cases
V = —1. The full line is a guide for the eye. Also we have plotted results {full curves) obtained
from theoretical arguments: (a) for the periodic case and (b) for the open case.

(ii) For open chains and initial conditions at site [ we have the same time evolution for
both values of V = =1 and both even and odd N wvalues. With the exception of the dimer
case (X, = 4) the critical value for self-trapping does not seem to depend on N being
approximately equal to X, = 4.35 (see figure 1).
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(iii) For open boundary conditions and the initial condition at site N/2 we study the
case V = —1. Here the critical value is about 4 until N =6 (for N = 3 and N = 35 there is
no abrupt transition), and for & up to 7 the X is about 2. For very large N the X reach
the limiting value 1.85, as expected, since for N > 1 the results from an open chain with
initial condition at the site N /2 must coincide with those of the periodic case (see figure 1).
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Figure 2. Time-averaged probability {|Cy,i?} for an initially occupied site g as a function of
the non-linearity parameter X for a chain with N = 48 sites and (i) periodic boundary conditions
(full curve}, {ii) open boundary conditions and ngy = 1 (broken curve) and (iii) open boundary
conditions and ny = 24 (dotted curve). In all cases V = —1.
In figure 1 we summarize all the results for cases (i), (ii) and (iii) for V = —1. In

figure 2 we plot (]C,,0|2) as a function of X for N = 48 (V = —1). We observe the
presence of irregular fluctuations prior to the trapped regime in the case of an open chain
and initial conditions starting from site no = 1. This is true for other values of N as well.
Furthermore, the very strong peak at X = 3.74 appears in a systematic way at the same
position, almost for all different N. For the periodic case and smaller N we also observe
similar fluctuations, but with smaller strength and width. These features are similar to those
observed for DNLS [4]. We see that MDNLS shares common features with the standard DNLS.
‘We note, however, that the systematic strong peak at a certain position before the seli-
trapping transition is characteristic only of MDNLS. Ancther important difference between
two non-linear equations is that in the periodic case for large N the self-trapping transition
occurs for a smaller valne of X for MDNLS than for DNLS. This value is about 1.85 for (2)
and 4.00 for DNLS [4]. For the case of open chains and initial conditions at site I we have
X equal to 4.35 in MDNLS and 4.00 in DNLS respectively.
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2.3. Comparison with theoretical estimates for self-trapping

Equation (2} can be derived from the following Hamiltonian:

H=VY (CuChii+ ChCnat) = X 3 (1Cmi1 PICms2l? + 1Cul®) (5)

using the equations of motion C, = {H, C,} with {Cp, C}} = 8, {Cpy Cp} = 0 =
{Cr,Cy1, where {,] are the standard Poisson brackets. Bernstein and co-workers [11]
suggested a simple way of using the Hamiltonian for DNLS as well as conservation of
energy for estimating the location of the self-trapping transition occurring in a chain with
a finite number of sites N. Their calcufations for DNLS are consistent with the numerical
findings and other analytical results. In order to repeat their calculations for MDNLS we need
the single-site energy H; (the value of H in the case that all the probability is concentrated
on a single site, i.e. C; = 1 for some { and C; =0 for j # i) and the equipartioned-state
energy Heq (the value of H in the case that C; = /1/A for all {). In [11] it was assumed
that equafing Hy; with H., and solving for X we obtain an estimate for the critical value
of the non-linearity parameter at the self-trapping transition. In our case we have from (5)

that H;; = —X and for an open chain we obtain
N-1 2X 2X
Hy=2V—— — — 4+ —,
“ N N N?

Using the condition Hy; = Hq leads to the following critical X:

NN =1

(N—-12+1 ©

Xg=-2V
For the periodic chain, on the other hand, H,, =2V —2X/N and the condition Hes = He,
leads to

N

Xa= —ZVN—_—Z. . _ - M
In figure I we plot the relations (6) and (7) respectively, along with numerical results for
comparison. We note that there is very good agreement in the periodic chain case. For
open chains there is agreement for N > 6 if we take initial conditions at site N /2.

3. Recurrence phenomena

The occurrence of recurrence phenomena in the solutions of non-linear differential equations
has been well known since the work of Fermi and co-workers, who studied numerically
vibrations in non-linear lattices [12]. Similar phenomena have been observed both
numerically and experimentally in the continuum NLS equation

du 9% 2
Ou 07w =0
13! + ax? + xlula

resulting from a Benjamin—Feir instability [13]. A behaviour of the same type has been
observed in the context of the more complicated coupled electron—phonon system described
in [8]. It is imteresting to find out whether the recurrence observed reflects properties
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of the MDNLS or if it is inherent in the electron-phonon system. For this purpose we
study dynarnical properties of the MDNLS for different initial conditions that might lead to
recurrence behaviour, and compare its behaviour with two other non-linear equations, Le.
the DNLS and the integrable DNLS (IDNLS), or Ablowitz—Ladic equation [9, 14]:

iC, = V{(Cop1 + Cacp) — XIC,|2(Crzt + Cam)- (%

Equation (8) is completely integrable [9]. All three equations (DNLS, MDNLS, IDNLS) are
different discrete versions of continuum NLS equation. In order to compare the three
discrete versions of NLS we assume an initial state that is an eigenstate of the tight-
binding part (i.e. the part obtained for X = 0). The initial condition has the form
Re(C,,(t = 0)) = +/2/N cos(kn) and Im(C,,(t = 0)) = 0, where N is the number of
sites and k is the wavenumber. We input this initial condition, follow the time evolution for
all probability amplitudes and calculate the participation number P(t) = 1/(3_, |Ca(8)|*),
which is very sensitive to wavefunction changes. The quantity P is an indicator of the
localization of the wavepacket. When P = 1, for instance, the packet is completely
confined in a single site (i.e. |Cy|* = 8y,4,) Whereas for a completely delocalized state
(i.e. |Cx|* = 1/N, ¥n) we have P = N.

3.1. Dependence on the non-linearity parameter X

In the numerical evaluation of P(#) we assume that V = —1 and a lattice with N = 300 sites.
For each wavenumber £ considered we vary the non-lingarity coefficient X in the range 0-5.
The wavenumber &k has been taken equal to sr/3 (which is the value for which the coupled
electron—-phonon system exhibits recurrence behaviour), 7/6 or #/3.3333. Qualitatively
the behaviour of P(r) is the same for DNLS and MDNLS. Afier an initial period of almost
perfect periodicity in time this behaviour terminates and P(f) becomes apertodic (figures 3
and 4). The integrable equation IDNLS behaves in a similar fashion except that after the
termination of the initial periodic behaviour there are still periodic features in the evolution
(see figure 4(b)). The characteristic time # for the end of the initial period is not the same
in the three equations and additionatly depends on the non-linearity parameter.

Changing the value of the non-linearity parameter X has the following two effects on
P(2). (i) It affects the amplitude of the periodic oscillations that become larger for higher
values of X. Note that for X = 0 the amplitude of the oscillations vanishes since we have an
exact eigenstate and there is no time dependence in the participation number. (i) It affects
the characteristic time #y that signals the destruction of the initial periodic behaviour. For
larger values of X the characteristic time #% becomes smaller and the periodic phenomena
disappear earlier (see figures 3(a) and 3(b)). All three equations share qualitatively this
dependence on X. We note, however, that #y is generally smaller for the MDNLS than for the
other two equations (see figure 3(b) and figure 4) leading to the conclusion that MDNLS has
more chaotic features than the other two equations. Finally, we should point out that this
initial periodic behaviour is observed only for wavenumber £ that correspond to eigenstates
of the tight-binding part of the equations. Even for small perturbations from these exact
eigenstates the periodic features disappear.

3.2. Dependence on the length of the lattice N

To find the dependence of the initial periodic behaviour on the length we considered two
chains with N = 40 and 300 and examined the time evolution of a common initial eigenstate.
For IDNLS and N = 40 although the system seems to acquire chaotic behaviour, suddenly
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periodicity is re-established and all of this phenomenon is repeated with surprising regularity.
This behaviour reveals a tendency of the system to form a localized structure (such as a
‘soliton’). The DNLS appears more chaotic than IDNLS for N = 40, whereas for N = 300
the behaviour of the two is quite similar, as expected since DNLS converges to the analytical
solution for large chains [4, 15]. For the MDNLS case we find that, for N = 300, the initially
periodic behaviour disappears faster than in DNLS and IDNLS. For N = 40 the periodicity
does not even have time to appear.

4. Conclusions

In the present work we presented an analytical and a numerical study of a modified discrete
non-linear Schréidinger equation and compared it with two other well known equations, i.e.
DNLS and IDNLS. The MDNLS occurs as a special limit in the dynamics of an electron coupled
to an acoustic chain with a symmetric coupling [7, 8]. The motivation for the present work
is the recurrence phenomena found in [8] in the context of the complete coupled problem.
We applied well known approaches from the study of DNLS [3,4,11] and analysed the
dynamical features of MDNLS. We found that in the case of a dimer and periodic trimer the
resulting equations are identical to those of DNLS, resulting in an identical evolution. We also
found that for the long periodic case the self-trapping transition occurs for smaller values of
non-linearity coefficient compared to the corresponding ones of DNLS. For chains of various
lengths we cobserve initially periodic behaviour that ceases to exist after an initial period that
depends on the value of the non-linearity parameter. The behaviour of MDNLS appears to
have more irregular features than the DNLS and IDNLS equations. These features consist of a
much faster transition to a non-periodic regime (figures 3 and 4) for any number of sites. We
conclude that the recurrence phenomena observed in the coupled electron—acoustic lattice
system [8] cannot be attributed to the MDNLS part, but are genuine effects of the interaction
with the acoustic chain. It is worthwhile to point out that those recurrence phenomena were
sustained for times of the order of 107 (in our units of A = 1, V = 1), i.e. many orders
of magnitude larger than the initial periodic behaviour exhibited in the present results. It
would be interesting to look for recurrences of the type seen in [8] in the context of DNLS
as well. In this case, one would have to study the interaction of the electron with an optical
chain of the Holstein type [16].
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